СУПОТНИЦКИЙ МИХАИЛ ВАСИЛЬЕВИЧ

К ВОПРОСУ О МЕСТЕ ВИЧ-ИНФЕКЦИИ и ВИЧ/СПИД-ПАНДЕМИИ СРЕДИ ДРУГИХ ИНФЕКЦИОННЫХ, ЭПИДЕМИЧЕСКИХ И ПАНДЕМИЧЕСКИХ ПРОЦЕССОВ

СТАТЬИ КНИГИ ОБСУДИТЬ ГОСТЕВАЯ КНИГА ССЫЛКИ ОБ АВТОРЕ
<~~ Предыдущая глава
Оглавление книги
Следующая глава ~~>

Супотницкий М.В. К вопросу о месте ВИЧ-инфекции и ВИЧ/СПИД-пандемии среди других инфекционных, эпидемических и пандемических процессов. 1. Генетические паразиты и симбионты генома человека // Энвайронментальная эпидемиология. — 2007. — Т. 1, № 1. — С. 7—58.

1. Генетические паразиты и симбионты генома человека

Основным препятствием, мешающим формированию адекватных представлений об опасности ВИЧ/СПИД-пандемии, является недостаточное внимание исследователей к тем эволюционным процессам, в которых главную роль сыграли транспозируемые элементы (ДНК-транспозоны, ретроэлементы) и другие представители так называемой «теневой части генома» (ретротранскрипты,ретропсевдогены, большие дупликации, микросателлиты и пр.).

1.1. Проретроэлементы и проретровирусы

Ретроэлементы (ретротранспозируемые элементы генома) составляют почти половину генома человека, что не может быть ни случайностью, ни рудиментом генетических структур прошлого.

Проретроэлементы. По мнению многих ученых (см. обзорные работы Стила Э. с соавт., 2002; Гладилина К.Л. и Суворова А.Н., 1995), первой молекулой, способной к репликации, был полимер РНК. Репликация осуществлялась за счет каталитической активности самой РНК (рибозимы) с большим количеством ошибок. В результате древний мир РНК представлял собой «эволюционирующий хаос», в котором выживали наиболее приспособленные репликаторы (Стил Э. с соавт., 2002). Однако этот процесс можно считать одним из первых гиперциклов по Эйгену, когда составляющие его химические реакции ведут себя подобно «дарвиновским видам», т.е. обладают способностью «отбираться» и, соответственно, эволюционировать в сторону увеличения сложности организации.

РНК как носитель генетической информации имеет пределы в сложности организации. К тому же она неустойчива в агрессивной химической среде. С момента появления самореплицирующихся молекул параллельно шел процесс отбора их более стабильных форм из числа молекул ДНК, образовывавшихся случайно посредством примитивной обратной транскрипции. Роль обратных транскриптаз играли сами молекулы РНК. А так как их активность неспецифична, копии ДНК делались и с других молекул РНК. Так формировались устойчивые полимерные агломераты — предтечи будущих хромосом. Обладая выраженной полярностью и значительным электрическим зарядом за счет поляризованных фосфатных групп, крупные молекулы ДНК в слабосолевых растворах формировали вокруг себя упорядоченные двуслойные оболочки из амфипатических органических соединений — деструктивное влияние внешней среды на новые макромолекулярные структуры снижалось. Естественный отбор сохранял только наиболее прочные из них. Для удержания оболочки такой протоклетке требовалось увеличить электрический заряд ДНК, что самым простым способом можно было достичь наращивая ее массу. Преимущества в этом процессе получили молекулы РНК протяженностью до 300 п. о., ДНК-копии которых были способны образовывать устойчивые структуры за счет водородных связей и гидрофобных взаимодействий — они и стали первыми ретротранспозонами. Теперь сложность протоклеточных структур достигла того уровня, начиная с которого склонность к вырождению «перестала быть всеобщей» (см. работу Дж. Фон Неймана, 1960).

Интроны и экзоны. Проретротранспозоны сыграли основную роль в усложнении генома клетки путем формирования его интрон-экзонной организации. Первыми интронами были массивы повторяющихся последовательностей ДНК, выполняющие функцию электростатического удержания поляризованных «хвостов» амфипатических молекул оболочки протоклетки. Экзоны же формировались путем случайных мутаций проретротранспозонов во время всех процессов матричного копирования их РНК (транскрипции, трансляции и обратной транскрипции) из участков РНК, обладающих каталитической активностью. Увеличение количества и протяженности таких структур способствовало увеличению скорости неэнзиматической трансляции простых пептидов, предназначенных в первую очередь для поддержания конформации самих РНК и примитивной регуляции процессов матричного копирования. Первые пептиды были термостабильны и гидрофобны, в слабосолевых растворах приобретали положительный заряд. Благодаря этим свойствам они обладали выраженной способностью связываться с нуклеиновыми кислотами и агрегировали между собой, формируя упорядоченные структуры протоклеток.

В последующем они послужили исходным материалом для эволюции:

1) гистоновыхи прионовыхбелков;

2) белков, входящих в состав рибонуклеопротеидов эукариот;

3) нуклеотидных и матриксных белков вирусов;

4) белков, которые мы сегодня знаем под названием шапероны, т.е. способных поддерживать трехмерную структуру других сложных белков. Естественный отбор закреплял новые признаки и новые биохимические процессы за протовидом. По мнению С. Пашутина (2006), процесс формирования РНК, способной связываться со «своей» аминокислотой (сегодня они известны как транспортные РНК; тРНК), послужил толчком к созданию примитивной системы кодирования информации об отдельных пептидах и белках и их транскрипции и трансляции в протоклетках. В ходе эволюции белкам, в силу более совершенной пространственной конфигурации, удалось перехватить каталитические функции у РНК. Результатом такого «перехвата» стало формирование генов ферментов, обладающих активностями:

1) ДНК-полимеразы (синтезирует одноцепочечную ДНК, комплементарную РНК);

2) рибонуклеазы (расщепляет исходную РНК);

3) интегразы (осуществляет процесс интеграции ДНК, синтезированной на матрице РНК, с уже существующей в протоклетке ДНК).

Три этих гена сыграли основную роль в переходе протоклеток от царства РНК к царству ДНК. Естественный отбор «подхватил» ген, кодирующий мультидоменный белок, проявляющий все три активности и известный нам с 1970 г. под названием «обратная транскриптаза». Сам процесс усложнения протоклеток в клетки, способные формировать уже многоклеточные организмы, занял не менее 3 млрд лет. «Разрастание» в архее ДНК-генома клеток за счет ретроэлементов послужило толчком к эволюции многоклеточных организмов (см. подглаву 2.3). На этом этапе их эволюции появились ретровирусы.

Проретровирусы. Своим появлением они обязаны накоплению у проретротранспозонов последовательностей нуклеотидов, кодирующих белки, входящие в оболочки протоклеток, и выполняющие функции порообразования и слияния. Кодируемые такими генами белки за счет гидрофобных взаимодействий формировали конгломераты с нуклеиновыми кислотами, которые могли сливаться с наружной мембраной протоклетки, образуя в ней «выпячивания» в другую протоклеточную полость, и перемещаться из одного компартмента протоклетки в другой. Тем самым организация протоклетки усложнялась, она становилась менее подверженной воздействиям извне. Структуры, способные переносить нуклеиновые кислоты между протоклеточными образованиями и воспроизводящиеся посредством примитивной обратной транскрипции, и были проретровирусами. На этом этапе эволюции клеточной жизни их еще можно рассматривать в качестве симбионтов протоклеток. Такие клетки сегодня называют синтициальными — это большие многоядерные протопласты, окруженные периплазматической мембраной. Механизм передачи ретровирусов, характерный для протоклеточных образований, давление естественного отбора сохранило по сей день. Ретровирусы могут перемещаться между клетками по филоподиям — длинным тонким короткоживущим «выпячиваниям», отходящим от фагоцитирующих клеток.

Сами же белково-нуклеиновые образования, осуществлявщие процесс перемещения нуклеиновых кислот между поляризованными оболочками протоклеток, и упорядочивавшие такие структуры шапероны, были закреплены естественным отбором тогда, когда в их составе оказался некий минимум РНК-генов. Среди них ген, кодирующий белок оболочки такого белково-нуклеинового образования (env), участвующий в порообразовании и слиянии клеток (прототип генов gp120 и gp41 ретровирусов) и обеспечивающий перемещение «конгломерата» между структурами протоклетки; рибозим, обладающий обратной транскриптазной активностью (прототип гена pol ретровирусов), синтезирующий массивы ДНК по матрице РНК; и прототип гена gag ретровирусов, кодировавший термостабильные и гидрофобные пептиды, предназначенные для поддержания конформации РНК проретроэлементов. Последние сегодня известны как белки группоспецифического антигена ретровирусов и прионовые белки эукариотических клеток (см. подглаву 1.3). Эти три гена фланкировали некодирующие последовательности РНК — прототипы длинных концевых повторов (long terminal repeats, LTR) ретровирусов, собственно и являющиеся той РНК-матрицей для синтеза ДНК, для перемещения которой между протоклеточными структурами естественным отбором поддерживались проретровирусы. Некодирующие последовательности РНК были достаточно большими, чтобы многократно транскрибированные с них ДНК могли электростатически удерживать оболочку, достаточно мощную, чтобы вся структура могла автономизироваться в протоклетку. ( Химическую сторону эволюции жизни в этой работе мы не рассматриваем. О ней более подробно можно прочитать в монографии А. В. Яблокова и А. Г. Юсуфова (1998) и в статье С. Пашутина (2006).)

Отдельные протоклеточные конгломераты приобрели селективные преимущества перед другими. Давление естественного отбора установило свои правила и ограничения для их размеров, структуры и функции. Естественный отбор дал преимущества проторетровирусам, включающим две и более цепей РНК, тем самым увеличивая стабильность передаваемой между клетками информации. Впоследствии такая система поддержания целостности генетической информации закрепилась у организмов, размножающихся половым путем, и стала еще более консервативной, исключив любые этапы, на которых могло иметь место копирование РНК для сохранения наследственной информации в последующих поколениях. Так функцию носителя генетической информации природа закрепила за двунитевой ДНК.

После вытеснения протоклеточных структур клетками, способными к автономной репликации, часть из них либо исчезла, либо вошла в состав этих клеток на правах органел-симбионтов (митохондрии, пластиды и др.). Естественный отбор «избавил» проретровирусы от крупных нуклеотидных последовательностей, уже не дававших им селективных преимуществ в самостоятельно реплицирующихся клетках. Но он же закрепил за ними последовательности, облегчающие им интеграцию в геном клеток; и гены, кодирующие белки, позволяющие отдельным ретроэлементам использовать ресурсы клеток для своего размножения и существования как биологического семейства. Теперь их роль в живой природе усложнилась. Если смотреть с точки зрения их взаимоотношения с отдельной клеткой, то они были для нее уже не симбионтами, а паразитами, так как размножались в цитоплазме клетки и за счет ее ресурсов, т.е. ретровирусами.

Двойственность отношений ретровирусов и клеток сохранилась. Ретровирусы поддерживаются в клетке и как эндосимбионты, и как паразиты (см. подглаву 2.2 «Ретровирусы»). А так как они обладают способностью увеличивать размер генома и вызывать в нем перестройки генетического материала, то в общебиологическом смысле они стали играть роль одного из самостоятельных факторов эволюции (см. «Ретровирусная эволюция»). Проретроэлементы сохранились в геноме эукариотической клетки в виде повторяющихся последовательностей на концах интегрирующихся с ним ДНК-копий ретроэлементов, образовавшихся в результате обратной транскрипции (инвертированные и прямые концевые повторы). Либо это дисперсно распределенные по геному повторяющиеся последовательности ДНК размером от сотен до тысяч нуклеотидов (составляют около 20 % геномной ДНК), иногда называемые «эгоистичной ДНК».

Для ретровирусов естественный отбор сохранил только две цепи РНК, являющиеся производными от одного родительского провируса. Диплоидность ретровирусов дала им существенные преимущества перед другими внутриклеточными паразитами и эндосимбионтами с РНК-геномом, так как легко возникающие мутации не создают однозначных преимуществ их обладателям. Но рекомбинация между РНК-геномами двух высокоадаптированных ретровирусов позволяет им в изменяющихся условиях среды обитания совершать «эволюционно широкие прыжки». Внешне поведение ретровирусов (в нашем восприятии!) — расширение ареала собственного существования — мало отличается от поведения других паразитов и эндосимбионтов (простейших, бактерий, микоплазм, вирусов других семейств), за исключением того, что нам почти ничего не известно об этих феноменах применительно к геному клетки. Да и существовать миллиарды лет им пришлось среди свободно живущих одноклеточных эукариотических организмов, конкурируя с другими их паразитами и эндосимбионтами (см. подглаву 2.1).

Ретровирусная эволюция. Закрепление естественным отбором механизмов наращивания и усложнения генома клетки, в которых участвуют ретровирусы и ретроэлементы, привело к созданию эволюционного механизма, работающего антиэнтропийно . Дело тут в следующем. Клетка в условиях постоянства окружающей среды может достичь равновесного состояния, когда процессы самоорганизации не будут поддерживаться извне, т. е. давлением естественного отбора. Естественный отбор, в свою очередь, не может выбирать «из ничего», и эволюционный процесс прекращается. Но к летка, как элементарная живая система, способная к обмену веществ с окружающей средой и к самовоспроизведению, получает энергию из окружающей среды. За счет этой энергии (в числе прочих биохимических процессов) происходят репликация, пролиферация, ретротранспозиция, дупликация генетического материала, причем сами эти процессы уже не зависят непосредственно от окружающей среды. Наращивание и усложнение генома вида ретроэлементами приводит к формированию новых генетических структур, которые в понимании дарвинистов могут быть закреплены естественным отбором, если они кодируют адаптивные признаки. Однако те же самые процессы могут дать виду признаки, на протяжении геологических эпох не создающие ему никаких преимуществ перед конкурирующими видами (неадаптивные признаки). А заодно они позволят антидарвинистам вновь поставить «ребром» вопрос о ненаучности учения Чарльза Дарвина. К тому же такое краеугольное понятие эволюционной теории, как «естественный отбор», довольно абстрактное. Его не всегда можно зафиксировать, так как оно отделено от времени, в течение которого этот «отбор» происходит. Ретроэлементы же познаваемы в эксперименте. Поэтому процесс образования новых генетических структур за счет активности ретроэлементов я предлагаю назвать ретровирусной эволюцией.

От нейтральной эволюции она отличается тем, что в ее основе лежат совершенно иные механизмы . Во-первых , мутации носят характер не отдельных точковых изменений в генах, а проявляются увеличением сложности генетических структур за счет транслокаций и тандемных дупликаций генетического материала клетки, экзонизации интронов и кластерной организации генов. Фенотипически этот процесс наращивания сложности генома проявляется увеличением у особи (вида) отдельных повторяющихся молекулярных ( V 2- C 2- и V 1- C 1-комбинации доменов иммуноглобулиновых белков), надмолекулярных (структура гемоглобина и ряда бактериальных токсинов) и анатомических структур (увеличение количества члеников у членистоногих, позвонков у хордовых и др.). Во-вторых , в отличие от нейтральной эволюции, этот процесс не идет с постоянной скоростью не только у разных видов, но даже у особей одного и того же вида. Скорость ретровирусной эволюции зависит от инфицированности вида (особи) ретровирусами, частоты их эндогенизации, характера взаимодействия с эндогеннымии ретровирусами и ретроэлементами, «заполненности» генома ретровирусами и ретроэлементами , их «возраста» и от других подобных факторов. В третьих , ретровирусная эволюция, в отличие от нейтральной, ведет к «взрывному» появлению множества короткоживущих (в геологических эпохах, разумеется) неадаптивных видов. Продолжительность их существования зависит как от процессов, в которых участвуют ретровирусы и ретроэлементы (т. е. они сами могут оказаться факторами естественного отбора), так и от действия факторов внешней среды (экзогенных факторов эволюции), иначе говоря, естественного отбора в дарвиновском его понимании (см. подглаву 2.3). Ниже мы рассмотрим результат эволюции самих ретроэлементов на примере генома современного вида Homo sapiens.

***

Экзогенные ретровирусы и эндогенные ретроэлементы генома (ретротранспозируемые элементы) первичны по отношению к одно- и многоклеточным организмам и фактически бессмертны. Вызываемые ими эволюционные процессы (я предлагаю назвать их ретровирусной эволюцией) происходят вне нашего ощущения времени и вне зависимости от продолжительности существования отдельных видов живых существ, всегда являющихся для ретротранспозируемых элементов промежуточными хозяевами. Давление естественного отбора закрепило за эндогенными ретроэлементами функцию постепенного наращивания генома вида-хозяина путем образования новых собственных копий; его усложнения путем образования новых экзонов из интронов и/или увеличения количества генов, подвергающихся альтернативному сплайсингу. Они придают виду способность к многовариантности эволюционных ответов на изменения в окружающей среде. Благодаря избыточности создаваемого эндогенными ретроэлементами генетического материала, под давлением естественного отбора происходит усложнение вида (анагенез) и/или его «расщепление» на дочерние виды (кладогенез). Исходные виды, ставшие в изменившихся условиях среды неадаптивными, вымирают. Роль же экзогенных ретровирусов в эволюции жизни заключается: 1) в осуществлении генетического обмена между видами; 2) в наращивании и усложнении генома той части инфицированного вида, у которой оказалась возможной их эндогенизация; 3) в терминации существования неспособных к эволюции видов. К последним относятся вид или какая-то его часть, у которых эндогенизации экзогенных ретровирусов не произошло. Эти процессы не имеют никакой «конечной цели».

<~~ Предыдущая глава
Оглавление книги
Следующая глава ~~>