СУПОТНИЦКИЙ МИХАИЛ ВАСИЛЬЕВИЧ

МИКРООРГАНИЗМЫ, ТОКСИНЫ И ЭПИДЕМИИ

ГЛАВА 1.3. ПАТОГЕННОСТЬ БАКТЕРИЙ

<~~ Предыдущая глава
Оглавление книги
Следующая глава ~~>

СТАТЬИ КНИГИ ФОРУМ ГОСТЕВАЯ КНИГА ССЫЛКИ ОБ АВТОРЕ

Наличие пептидогликана у бактериальной клетки определяет основную стратегию ее паразитизма, при которой продолжительность инфекционного процесса лимитируется иммунной системой хозяина (первая стратегия). Патогенная бактерия может кратковременно имитировать вторую стратегию путем несбалансированного роста, когда утрачивается клеточная стенка (L-формы бактерий) и она становится менее узнаваемой для иммунной системы хозяина. Однако в этом случае бактерия вынуждено переходит на более низкий уровень биосинтеза органических веществ, что приводит к замедлению ее размножения. В результате возбудитель не накапливается до такой степени, что бы вызвать типичный инфекционный процесс. Болезнь переходит в стадию резидентного бактерионосительства и может закончиться гибелью паразита без смены им хозяина. Для того, что бы быть патогенными, бактерии должны: инфицировать слизистые поверхности; проникать через них в хозяина; размножаться во внутренней среде хозяина; противодействовать его защитным механизмам и причинять ему вред. Необходимость в выполнении первых двух требований отпадает, если бактерии проникают в ткани через альвеолы (в составе мелкодисперсного аэрозоля) и поврежденную кожу (укусы переносчиков). Для выполнения каждого из этих требований бактерии должны обладать рядом биологических факторов, которые кратко описаны ниже [Smith H., 1995; Finlay В., Falkow S., 1997; Бухарин О.В., Литвин В.Ю., 1997].

Факторы патогенности. Каждый из них ответственен за проявление конкретных свойств микроорганизма в инфекционном процессе. К ним относят: факторы адгезии и колонизации — с их помощью бактерии распознают рецепторы на мембранах клеток, прикрепляются к ним и колонизируют клетки (различные поверхностные структуры клеточной стенки); факторы инвазии — благодаря им бактерия проникает в клетку (белки наружной мембраны); факторы, препятствующие фагоцитозу — либо маскируют бактерию от фагоцитоза (капсула), либо подавляют фагоцитоз (различные белки — белок А у стафилококков, белок М у стрептококков); факторы, подавляющие фагоцитоз — вещества, подавляющие окислительный взрыв фагоцитов (например, V-W-антигены Y. pestis); ферменты «защиты и агрессии» бактерий — способствуют распространению бактерий по тканям хозяина (гиалуронидаза, лецитиназа, протеазы и др.); эндотоксины — представлены только у грамотрицательных микроорганизмов (липосахариды и связанные с ними белки клеточной стенки). Высвобождаются в среду организма после гибели клетки и обладают многообразным воспалительным и пирогенным действием неспецифического характера; экзотоксины (подробно о них в разделе 1.5) — токсические молекулы, активно секретируемые в окружающую среду с помощью специальных секретируемых систем [Коротяев А.И., Бабичев С.А., 1998]. Далее мы покажем участие этих факторов в инфекционных процессах.

Инфицирование слизистых поверхностей. Слизистые поверхности носоглотки, желудочно-кишечного тракта и половых путей, изобилуют комменсалами, которые ограничивают доступ патогенов к питательным веществам. Кроме того комменсалы занимают поверхностное пространство и продуцируют различные ингибирующие вещества. Механизм противодействия бактериальных патогенов комменсалам плохо изучен. Известно, что лишь очень небольшим количествам патогенов слизистой оболочки удается преодолеть эту защиту. Следующий барьер, который они должны преодолеть, это слизь. Обнаружено, по крайней мере, два механизма, позволяющие бактериям преодолевать этот барьер. Первый — это подвижность (т.е., обладание жгутиками) и хемотаксис. Второй — наличие в слизи рецепторов хозяина для адгезинов бактерий, которые удерживают бактерии и блокируют взаимодействие с рецепторами эпителиальных клеток. Патогенные бактерии способны расти в слизи, тем самым подавляя любые рецепторы или другие блокирующие агенты [Smith H., 1995]. Далее, что бы не допустить удаления в результате движения воздушного потока либо содержимого кишечника, им необходимо закрепиться на поверхности эпителия. Способность бактерий к адгезии и колонизации поверхностей закреплена естественным отбором. Она наблюдается не только в организме человека и теплокровных животных. Эта функция необходима бактериям при сапрофитическом существовании. Например, легионеллы активно прикрепляются к поверхности цианобактерий [Bohach, Snyder 1983], холерные вибрионы активно колонизируют зоопланктон, хитин которых используется ими как источник питания и стимулируют размножение холерных вибрионов [Nalin at al., 1979]. Таким об разом адгезия — это общебиологическое явление, известное как свойство микроорганизмов фиксироваться и размножаться, колонизируя поверхности различной природы. Большинство грамотрицательных бактерий прикрепляются к эпителиальным клеткам человека и животных с помощью адгезинов, представляющих собой особые органеллы [Бухарин О.В. и Усвяцов Б.Я., 1996]. Отдельные патогены используют сразу несколько «факторов адгезии», например, B. pertussis и H. influenzae. Наиболее распространенными являются пили — выросты нитевидной формы, расположенные на полюсах бактериальной клетки. Как правило, они состоят из белковых субъединиц с молекулярной массой 15000—30000 и содержат до 50% гидрофобных аминокислот [Мороз А.Ф., 1988]. Пили используются бактериями для связи с субстратами почвы, и этот процесс нередко имеет характер адгезин-рецепторного взаимодействия, обеспечивающего им высокую специфичность при колонизации в организме теплокровного. Например, пили уропатогенньп кишечных палочек связываются с группировкой альфа-D-галактопиранозил-(1-4)-бета-В-галактопиранозида, входящей в состав гликолипида поверхности эпителия, выстилающего верхний отдел уринарного тракта [Hultgren S. et al., 1993]. Количество и тонкая структура таких рецепторов в уринарном тракте человека варьируют, однако у уропатогенных бактерий синтезируются различные адгезиновые варианты пилей, что значительно повышает вероятность их адгезии Синегнойная палочка проявляет адгезивные свойства по отношению к эпителию дыхательного тракта, чем объясняется частая его колонизация при застойных явлениях в трахее и бронхах. Адгезия синегнойной палочки к другим эукариотическим клеткам происходит только в случае их термического или химического повреждения [Мороз А.Ф., 1988].

Адгезия бактериального патогена может осуществляться к компонентам внеклеточного матрикса — фибронектину, коллагену, ламинину и др. Матриксные белки имеют последовательность RGD, с которой взаимодействуют интегрины клеточной поверхности. Тем самым белки внеклеточного матрикса способствуют «приклеиванию» бактерий к клеткам-мишеням хозяина [Finlay В., Falkow S., 1997]. Адгезия бактерий к таким белкам носит специфический характер и каждый патоген реализует эту возможность «по-своему». Для проявления патогенности некоторых бактерий критическое значение имеет их взаимодействие с матриксными белками. Например, белок YadA способствует связыванию Yersinia enterocolitica с клеточным, но не плазменным фибронектином посредством адгезии с коллагенами и ламинининами. Утрата YadA снижает вирулентность возбудителя иерсиниоза для мышей почти в 100 раз [Pere J.C. et al., 1995].

В последние годы стало ясно, что адгезия бактерий не является простым механическим взаимодействием их лиганд-структур с рецепторами на поверхности клеток-мишеней хозяина, имеющими другое предназначение. Взаимодействие патогена с клеткой хозяина может приводить к активации сигнальных систем клеток непосредственно бактериальным компонентом, либо через стимуляцию активационных факторов хозяина, например, воспалительных цитокинов. Было показано, что энтеропатогенные кишечные палочки (ЕРЕС) секретируют белки, активирующие сигнальный путь, включающий фосфорилирование одного из белков клетки-хозяина — Нр90. После этого становится возможной адгезия бактерии к поверхности клетки. Самым удивительным для ученых, обнаружившим данное явление, оказалось то, что тирозин-фосфорилированная форма Нр90 и есть тот рецептор, с которым взаимодействует адгезии ЕРЕС — наружный мембранный белок интимин (94 кд), кодируемый еае-геном [Rosenshine et al., 1996; Goosney D. et al., 1999]. Механизм, запускающий инвазию бактерий после их адгезии к клеткам хозяина, включается еще до того, как эта адгезия произошла. Бактерии способны «чувствовать» свое окружение и регулировать плотность своих популяций посредством сигналов «от клетки к клетке» (рис. 7).

Рис. 7. Схематическое изображение запуска генов инвазии пролиферирующими бактериями. Самая простая система передачи сигнала «от клетки к клетке» предполагает взаимодействие двух генов. Первый — это ген I, кодирующий автоиндуцируемую синтетазу, второй — R-ген, кодирующий транскрипциональный активаторный белок (R-белок). Автоиндуцируемая синтетаза отвечает за синтез автоиндуцируемой молекулы (AI), которая проникает: через клеточную мембрану. С увеличением клеточной плотности внеклеточная концентрация AI возрастает тысячекратно, и AI связывает транскрипциональный активатор. Комплекс R-белок/АI активирует экспрессию гена-мишени, например, обеспечивающего бактерии способность проникать в клетку-мишень

Рис. 7. Схематическое изображение запуска генов инвазии пролиферирующими бактериями. Самая простая система передачи сигнала «от клетки к клетке» предполагает взаимодействие двух генов. Первый — это ген I, кодирующий автоиндуцируемую синтетазу, второй — R-ген, кодирующий транскрипциональный активаторный белок (R-белок). Автоиндуцируемая синтетаза отвечает за синтез автоиндуцируемой молекулы (AI), которая проникает: через клеточную мембрану. С увеличением клеточной плотности внеклеточная концентрация AI возрастает тысячекратно, и AI связывает транскрипциональный активатор. Комплекс R-белок/АI активирует экспрессию гена-мишени, например, обеспечивающего бактерии способность проникать в клетку-мишень [Van Delden С, Iglewski В., 1998]

Заметим, что почти все факторы вирулентности бактерий строго регулируются, при этом их экспрессия связана с различными сигналами окружающей среды (температура, концентрация ионов, осмолярность, количество железа, рН, наличие источника углерода, содержание кислорода и др.). Патогены используют один или более из этих факторов для того, чтобы «понять» в какой микросреде, т.е., на какой стадии инфекционного процесса они находятся в настоящее время. Например, гены инвазии обычно включаются на ранней стадии инфекции, но подавляются, когда бактерии проникают внутрь клеток хозяина [Finlay В., Falkow S., 1997].

Обращает на себя внимание избыточность механизмов адгезии и колонизации у бактерий.

Инвазия. Многие патогенные микроорганизмы способны проникать в клетки хозяина и активно в них размножаться. Для проникновения в клетки бактерии используют адгезивные молекулы, называемые инвазинами. Наиболее распространенный механизм адгезии включает активацию сигналов в клетке хозяина, которые делают возможным инвазию бактерий посредством запуска нормальных клеточных реакций. Проникновение же бактерий в клетку обеспечивается элементами ее цитоскелета.

Некоторые патогены, например, Rickettsia prowazeckii, продуцируют фосфолипазы, разрушающие клеточную стенку вокруг «прилипшего» микроорганизма и он проникает непосредственно в цитоплазму [Walker D.H. et al., 1983]. Однако каким образом осуществляется контроль энзиматической деградации, предотвращающий клеточный лизис и как клетки хозяина восстанавливают свои мембраны после инвазии, остается неизвестным [Finlay В., Falkow S., 1997].

Рассмотрим более изученные механизмы инвазии. В табл. 1 сопоставлены механизмы инвазии некоторых патогенных бактерий.

Таблица 1

Сравнение механизмов инвазии патогенных бактерий

Бактерия

Бактериальный инвазин

Рецептор (ы) хозяина

Особенности

Yersinia

 

 

Инвазин

бета1-интегрин

«Зип-лайк» — фагоцитоз, инвазия опосредованная актином, но не разрушающая мембрану клетки, (активированная тирозинкиназой)

Yad A

бета1-интегрин

Менее эффективный чем инвазин

Ail

?

Инвазия неэффективна и менее специфична

L. monocytogenes

Интерналин

(Inl A)

Е-кадхерин

«Зип-лайк» — фагоцитоз, опосредованная актином, мембрана клетки не разрушается, активация тирозинкиназой

S. flexneri

Ipa-D

альфа5бета1-интегрин?

Разрушение мембраны, изменение клеточного цитоскелета без истечения кальция

S. typhimurium

SipB-D

?

«Рифление» мембраны, изменение клеточного цитоскелета, макропиноцитоз, ток кальция и некоторые другие сигналы (не ингибируемые киназными ингибиторами), формирование поверхностных отростков

Энтеропатогенная E. coli

Инвазин

Hp90

Формирование «пъедестала» и тесная адгезия (зависимая от микротрубок и актина), опосредована тирозинкиназой

Pseudomonas aeruginosa. Возбудитель синегнойной инфекции продуцирует несколько внеклеточных белков, способствующих его инвазии и диссеминации (рис. 8).

Рис. 8. Схематическое изображение факторов вирулентности Pseudomonas aeruginosa. P. aeruginosa имеет факторы вирулентности, связанные с клеткой (жгутики, пили, непилиевые адгезины, альгинат, ЛПС) и внеклеточные факторы вирулентности [Van Delden С., Iglewski В., 1998]

Рис. 8. Схематическое изображение факторов вирулентности Pseudomonas aeruginosa. P. aeruginosa имеет факторы вирулентности, связанные с клеткой (жгутики, пили, непилиевые адгезины, альгинат, ЛПС) и внеклеточные факторы вирулентности [Van Delden С., Iglewski В., 1998]

Прежде всего это экзотоксин А (является ADP-рибозилтрансферазой). Он способен инактивировать фактор элонгации 2 и тем самым ингибировать в клетке белковый синтез. Экзотоксин А ответственен за локальные повреждения тканей и иммуносупрессию. Экзоэнзим S также является ADP-рибозилтрансферазой, но преимущественно рибозилирут GTP-белки, такие как Ras. Он ответственен за непосредственное разрушение легочной ткани. Два гемолизина — фосфолипаза С и рамноллипид, могут действовать как синергисты при разрушении липидов и лектинов. Рамноллипид содержит детергент-подобную структуру и благодаря ей он растворяет фосфолипиды легочных тканей, делая их более доступными для разрушения фосфолипазой С. Протеазы (LasB-эластаза, LasA-эластаза и щелочная протеаза) играют основную роль во время острой фазы инфекции. Роль щелочной протеазы в инвазии P. aeruginosa, неизвестна. LasA-эластаза является сериновой протеазой и действует как синергист LasB-протеазы (цинк металлопротеаза) при деградации эластина легочной ткани. LasB-эластаза деградирует не только эластин, но и фибрин и коллаген, а также инактивирует человеческие иммуноглобулины G и А, компоненты комплемента и лизоцим, находящийся в воздушных путях, т.е., LasB-эластаза еще и препятствует действию механизмов защиты хозяина [Van Delden С, Iglewski В., 1998]. Система регуляции генов патогенности P. aeruginosa показана на рис. 9.

Рис. 9. Схематическое изображение регуляции генов патогенности Pseudomonas aeruginosa. Система сигналов las, передаваемых от клетки к клетке, в иерархическом каскаде контролируется посредством сигнальной системы белка rhi Комплекс LasR/-3-oxo-C12-HSL активирует транскрипцию rhlR. 3-охо-12HSL блокирует активацию RhlR посредством C4-HSL. Сама las-система контролируется позитивно — посредством Vfr и GacA, и негативно — посредством RsaL. 3-oxo-C12-HSL требуется для дифференциации биопленки и обладает иммуномодуляторной активностью. Обе сигнальные системы регулируют экспрессию различных генов (lasB — LasB-эластаза; lasA — LasA-эластаза; toxA — экзотоксин А; арrА — щелочная протеаза хсрР и xcpR — гены хср-секреторного пути; rhlАВ — рамнозилтрансфераза, требуемая для продукции рамноллипида; rpoS — сигма-фактор стационарной фазы [Van Delden С, Iglewski В., 1998]

Рис. 9. Схематическое изображение регуляции генов патогенности Pseudomonas aeruginosa. Система сигналов las, передаваемых от «клетки к клетке», в иерархическом каскаде контролируется посредством сигнальной системы белка rhi Комплекс LasR/-3-oxo-C12-HSL активирует транскрипцию rhlR. 3-охо-12HSL блокирует активацию RhlR посредством C4-HSL. Сама las-система контролируется позитивно — посредством Vfr и GacA, и негативно — посредством RsaL. 3-oxo-C12-HSL требуется для дифференциации биопленки и обладает иммуномодуляторной активностью. Обе сигнальные системы регулируют экспрессию различных генов (lasB — LasB-эластаза; lasA — LasA-эластаза; toxA — экзотоксин А; арrА — щелочная протеаза хсрР и xcpR — гены хср-секреторного пути; rhlАВ — рамнозилтрансфераза, требуемая для продукции рамноллипида; rpoS — сигма-фактор стационарной фазы [Van Delden С, Iglewski В., 1998]

 

Shigella flexneri — возбудитель дизентерии у людей. Посредством эндоцитоза, через лимфатические фолликулы пейферовых бляшек тонкого кишечника, шигеллы проникают в слизистую оболочку ободочной кишки (рис. 10). Продуктами генов, которые инициируют процесс инвазии, являются три белка: IpaB (плазмидный антиген инвазии — 62 кд), IpaD (38 кд), IpaC (42 кд). В lamina prdpria они инфицируют макрофаги и вызывают запрограммированную гибель клеток. Цитокины высвобождаются и индуцируют воспаление. Вследствие притока полиморфно-ядерных фагоцитов разрушается базальная мембрана и разрывается эпителий. Клетки, теперь уже лишенные щеточной каемки, становятся уязвимыми и не защищенными от индуцируемого плазмидой проникновения шигелл. Детерминантой апоптической гибели макрофагов является белок IpaB. В течение короткого времени после проникновения шигелл в клетки, вакуоли лизируются под действием IpaB. Высвободившись, бактерии быстро размножаются внутри цитоплазмы. Шигеллы неподвижны и лишены жгутиков, но они перемещаются внутри клетки и распространяются от одной клетки к другой. Это обусловлено образованием у них «хвоста» из полимеризованного актина хозяина под влиянием гена ics (гена внутриклеточного распространения), который кодирует 120 кд белок. Перенос шигелл осуществляется через выступы на поверхности одной клетки, которые вставлены в инвагинации соседней клетки. Затем части, содержащие бактерии, отсекаются. Двойные мембраны лизируются продуктами плазмидного гена icsB, высвобождая бактерии для дальнейших циклов роста и переноса [Smith H., 1995; Finlay В Falkow S., 1997; Goosney D. et al., 1999].

Рис. 10. Механизм инвазии Shigella flexneri. A. Иммунофлюоресцентная фотография, показывающая Shigella (темноевключение), проникающую через цитоплазму посредством полимеризованного актина (светлые нити). B. Перестановки цитоскелета, обусловленные инвазией Shigella. Наружный мембранный белок IcsA используется шигеллой для продвижения вклетку хозяина. IcsA непосредственно соединяется с двумя белками клетке хозяина — винкулином и белком нейрального синдрома Вискота-Аль-Дрехта (N-WASP). Шигелла расщепляет винкулин, в результате образуется 90 кд фрагмент, который присоединяется к IcsA и к вазодилататорстимулирующему белку (VASP). VASP рекрутирует белки цитоскелета клетки хозяина (актин и профилин) к бактериальной поверхности и формирует актиновый «мотор» для продвижения шигеллы

Рис. 10. Механизм инвазии Shigella flexneri. A. Иммунофлюоресцентная фотография, показывающая Shigella (темноевключение), проникающую через цитоплазму посредством полимеризованного актина (светлые нити). B. Перестановки цитоскелета, обусловленные инвазией Shigella. Наружный мембранный белок IcsA используется шигеллой для продвижения вклетку хозяина. IcsA непосредственно соединяется с двумя белками клетке хозяина — винкулином и белком нейрального синдрома Вискота-Аль-Дрехта (N-WASP). Шигелла расщепляет винкулин, в результате образуется 90 кд фрагмент, который присоединяется к IcsA и к вазодилататорстимулирующему белку (VASP). VASP рекрутирует белки цитоскелета клетки хозяина (актин и профилин) к бактериальной поверхности и формирует актиновый «мотор» для продвижения шигеллы

Salmonella typhimuriumвозбудитель энтероинфекции людей (рис. 11). Для проникновения возбудителя в нефагоцитирующий эпителий необходимы несколько хромосомных генов (inv/spa), кластированных на «острове патогенности», названном SPI1 (Salmonella pathogenicity island 1; более подробно см. «острова патогенности» и «системы секреции бактериальной клетки»). Подобно ЕРЕС, АРМ кодирует третий тип секреторной системы, активируемой посредством межклеточного контакта. Это позволяет экспортировать и клетку хозяина детерминанты вирулентности, необходимые для бактериальной инвазии [Goosney D. et al., 1999].

Рис. 11. Механизм инвазии Salmonella typhimuriym. A. Трансмиссионная электронная микрофотография индуцированного Salmonella «рифления» мембраны поляризованных Сасо-2 эпителиальных клеток. B. Инвазия Salmonella в эпителиальные клетки хозяина. Salmonella секретирует белки вирулентности, включающие SopE и SptP с помощью секреторной системы III типа. SopE функционирует как фактор обмена гуанидина для небольших СТР(гуанидинтрифосфат)-связывающих белков, вероятно, вызывая обмен GDP на GTP белка CDC42, члена семейства Rho. SptR является фосфатазой, необходимой для инвазии. Предполагается, что она разрушает цитоскелет. Инвазия также стимулирует активность фосфолипазы С (PLC1, приводящей к истечению из клетки и иозитолтрифосфата (IP3) и Са2+. Последний, в свою очередь, «обратным ходом» может быть вовлечен в перестройку цитоскелета, что приводит к «рифлению» мембраны эукариотической клетки и интернализации Salmonella [Goosney D. et al., 1999]

Рис. 11. Механизм инвазии Salmonella typhimurium. A. Трансмиссионная электронная микрофотография индуцированного Salmonella «рифления» мембраны поляризованных Сасо-2 эпителиальных клеток. B. Инвазия Salmonella в эпителиальные клетки хозяина. Salmonella секретирует белки вирулентности, включающие SopE и SptP с помощью секреторной системы III типа. SopE функционирует как фактор обмена гуанидина для небольших СТР(гуанидинтрифосфат)-связывающих белков, вероятно, вызывая обмен GDP на GTP белка CDC42, члена семейства Rho. SptR является фосфатазой, необходимой для инвазии. Предполагается, что она разрушает цитоскелет. Инвазия также стимулирует активность фосфолипазы С (PLC1, приводящей к истечению из клетки и иозитолтрифосфата (IP3) и Са2+. Последний, в свою очередь, «обратным ходом» может быть вовлечен в перестройку цитоскелета, что приводит к «рифлению» мембраны эукариотической клетки и интернализации Salmonella [Goosney D. et al., 1999]

Yersinia. Наиболее изучены системы инвазии у Yersinia enterocolitica и у Yersinia pseudotuberculosis. Первоначально они проникают в организм через посредничество М-клеток пейеровых бляшек подвздошной кишки. Дальнейшая диссеминация происходит благодаря выживанию внутри макрофагов, которые мигрируют через лимфатическую систему. Оба микроорганизма обладают хромосомными генами, кодирующими наружный мембранный белок инвазии, способствующий их адгезии и проникновению в нефагоцитирующие клетки. Показано, что инвазин эффективно присоединяется к белкам семейства (бета1-интегринов. После тесного связывания с интегринами, инвазин индуцирует проникновение бактерии во внутрь клетки с помощью механизма, подобного «застежке молнии» («zipper-like» mechanism — «зип-лайк» механизм). Он заключается в «расстегивании» мембраны вокруг бактерии в момент ее проникновения в клетку хозяина. Энтеропатогенные Yersinia обладают еще двумя инвазинами: Ail и YadA. Белок Ail способствует более эффективной адгезии к эпителиальным клеткам, но не участвует в их инвазии. Зато он способствует устойчивости Yersinia к действию сыворотки (такие белки широко распространены среди других инвазивных бактерий). YadA — это белок, закодированный на плазмиде. Подобно инвазину он связывается с (бета1-интегринами клеток хозяина. Присоединение Yersinia к бета1-интегрину клетки хозяина запускает механизм контакт-зависимой секреции плазмидных факторов вирулентности и последующей транслокации в ее цитоплазму отдельных бактериальных белков [Smith H., 1995; Finlay В, Falkow S., 1997].

Патогены, связывающие молекулы хозяина для осуществления инвазии. Механизмы инвазии отдельных патогенов не поддаются логике. Легионеллы и микобактерии связывают фрагменты комплемента СЗb и СЗbi, которые облегчают их проникновение в фагоцитирующие клетки, и тем самым, уменьшают для них риск подвергнуться воздействию окислительных радикалов [Schlesinger L.S., Haas R., 1994]. Другие микроорганизмы связывают фибронектин, который затем функционирует как мостик между бактерией и фибронектиновым рецептором клетки хозяина, способствуя их инвазии. Например, Mycobacterium leprae продуцирует фибронектинсвязывающий белок, который способствует ее проникновению в эпителий и шванновские клеточные линии [Schorey А.В. et al., 1995]. Интересно, что механизмы, используемые для инвазии в нефагоцитирующие клетки функционируют и в отношении фагоцитирующих клеток. Например, мутант S. typhimurium, утративший способность к инвазии эпителиальных клеток, одновременно значительно снижает свою способность проникать в фагоцитирующие клетки [Gahring L.C., 1990]. Это возможно потому, что использование бактериями путей активной инвазии, помогает им избежать антибактериальной активности фагосом, куда они неизбежно попадают при традиционном фагоцитозе [Finlay В., Falkow S., 1997].

Внутриклеточная жизнь бактериальных патогенов. Механизм блокирования активного фагоцитоза макрофагами теплокровных имеет аналоги в природе: легионеллы, проникая в амебы и инфузории, используют те же механизмы, предотвращающие их переваривание и позволяющие микробам активно размножаться в вакуолях простейших [Бухарин О.В., Литвин В.Ю., 1997]. Т.е. патогенность «новых» для человека бактерий может объясняться тем, что они уже были преадаптированы к такой встрече. С. Richmond (1987) считает, что проникновение легионелл в легочные макрофаги обусловлено их «ошибкой» (по определению В. Levin — это «недальновидная эволюция»), ставшей возможной из-за большого сходства этих клеток с их природными хозяевами — амебами. Любопытно и то, как легионеллы убивают человеческие фагоциты. Для этого они используют эволюционно очень древний прием — индуцирование апоптоза, видимо «отработанный» еще на амебах [Hagele S., et al., 1998]. В ряде исследований обнаружена прямая корреляция между успешным внутриклеточным ростом бактерии и ее вирулентностью |Finlay В., Falkow S., 1997].

Большинство фагоцитированных бактерий все же погибает в макрофагах и полиморфно-ядерных лейкоцитах. Однако некоторые применяют удачные стратегии собственного выживания. Например, S. flexneri и L. monocytogenes растворяют мембрану образовавшейся вокруг них вакуоли и таким образом получают доступ к богатой питательными веществами цитоплазме. Coxiella burnetii выживает и даже «процветает» среди бактерицидных агентов, доставляемых клеткой хозяина в фаголизосомы. Основным требованием Демона Дарвина к патогену является способность того приспособиться к температуре, осмолярности, концентрации кислорода и уровню питательных веществ внутри тканей хозяина. Это позволит ему достичь такой скорости размножения, которая в наибольшей степени способствует использованию ресурсов хозяина при данной стратегии паразитизма, а, следовательно, ведет к дальнейшему развитию болезни.

Жизнь внутри вакуоли. Патогены используют разнообразные механизмы, позволяющие им избежать гибели в вакуолях («непробиваемые» капсулы; ферменты, нейтрализующие кислородные радикалы и протеолитические ферменты и др.). Но удивительно то, что некоторые из них фактически зависят от факторов, обнаруженных в фаголизосомах! Например, С. burnetii и S. typhimurium нуждаются в кислых значениях рН в качестве сигнала для внутриклеточной репликации. При этом само проникновение именно в данную фаголизосому, тоже предопределено. Специфический рецептор, который патоген использует для вторжения в эпителиальную клетку или для поглощения фагоцитом, в значительной степени влияет на конечную внутриклеточную локализацию вакуоли, которая окружает патоген [Finlay В., Falkow S., 1997]. Вот уж действительно, паразитические микроорганизмы это не примитивные, а более древние формы жизни!

Взаимодействие бактериальных патогенов с иммунной системой хозяина. Локальное взаимодействие бактериального патогена с тканями, как правило, вызывает большое количество системных реакций, посредством которых организм хозяина пытается контролировать течение инфекции. Иммунная система млекопитающих способна узнавать многие компоненты бактерий, особенно ЛПС и пептидогликан. Однако на некоторые из них эта реакция чрезмерна. Staphylococcus aureus продуцирует токсин, названный «суперантигеном» из-за того, что он вызывает токсический шок. «Суперанти-генными» свойствами обладают отдельные антигены возбудителя псевдотуберкулеза и уропатогенных кишечных палочек. Их роль в инфекционном процессе не ясна. Предполагается, что «суперантигены» позволяют бактериям преодолевать локальные защитные системы хозяина [Finlay В., Falkow S., 1997], т.е. их синтез является следствием «недальновидной эволюции».

В результате длительного селекционного давления (в том числе и в окружающей среде), наиболее «удачливые» патогены вырабатывают стратегию, позволяющую либо избежать, либо вводить в заблуждение иммунную систему нового хозяина. О.В. Бухарин и Б.Я. Усвяцов (1996) выделяют 4 типовых механизма защиты бактерий от факторов иммунитета.

Экранирование клеточной стенки бактерий. Механизмы экранирования структур бактерий (пептидогликан, поверхностные белки клеточной стенки и др.), опознаваемых иммунной системой хозяина, могут иметь как специфический, так и неспецифический характер. Из неспецифических «экранов», наиболее изучены капсулы и капсулоподобные образования.

Создание бактериями капсульного материала полисахаридной и протеиновой природы представляет наиболее типичную тактику бактериального уклонения от фагоцитоза. Являясь по своей природе полимером N-ацетилнейраминовой кислоты, капсулы многих бактерий сходны не только в химическом, но и в биологическом отношении. Они покрывают основные компоненты клеточной стенки и препятствуют активации комплемента сыворотки [Бухарин О.В., Литвин В.Ю., 1997].

Капсулоподобные образования формируются за счет неспецифической сорбции поверхности бактериальной клетки сывороточных протеинов хозяина (иммуноглобулинов, фибриногена, 2-микроглобулина, гаптоглобулина, сывороточного альбумина, и др.). Такое иммуноглобулиновое покрытие может достигать толщины 100 нм. Оно помогает бактериям уйти от распознавания иммунной системой, придает устойчивость к фагоцитозу и прикрывает их поверхность от лиганд-рецепторных взаимодействий [Бухарин О.В., Литвин В.Ю., 1997].

Сходную функцию — экранирование петидогликана и воспрепятствование опсонизирующему действию системы комплемента, выполняет у стафилококков — белок А, у стрептококков — белок М [Езепчук Ю.В., 1985].

К специфическому механизму экранирования клеточной стенки бактерий, видимо, можно отнести их антигенную вариабельность.

Многие поверхностные структуры бактерий способны к антигенному варьированию — это жгутики, пили, ЛПС, капсулы, S-слой, секретируемые ферменты и отдельные белки клеточной стенки. Однако это не означает, что они все сразу варьируют у каждого патогена. Интенсивному варьированию подвержены только некоторые из них, как правило, это активно экспрессируемые (или экспонируемые) иммунодоминантные поверхностные белки патогенов, «проживающих» на поверхности слизистых оболочек. Примеров антигенной вариабельности среди внутриклеточных бактерий, значительно меньше. Видимо, это связано с тем, что основной иммунный ответ хозяина вызывают другие их антигены [Finlay В., Falkow S., 1997].

Наиболее хорошо механизм антигенной вариации изучен у Neisseria (N. gonorrhoeae, N. meningitidis). Основной варьирующей антигенной структурой у представителей этого семейства являются пили. Гонококки располагают потенциально большим набором серологически различных пилей, однако всегда экспрессируется ген только одного из них. Это вызвано тем, что в бактериальной клетке постоянно экспрессируется только один функционально активный пилиновый локус (pil E). Но одновременно с ним в хромосоме разбросаны еще более чем 50 усеченных нетранскрибируемых генов пилей. В случае генетической перестановки, происходящей по принципу «русской рулетки» (и посредством Rec А), экспрессируемый ген в pil Е заменяется одним из молчащих, с другими серологическими свойствами — антигенная структура гонококка меняется [Seifert H.S., 1992].

Другой варьирующей структурой семейства являются их поверхностные белки Ора. Экспрессия гена каждого такого белка независима от других и реализуется через «двухпозиционный переключатель». Каждый ора-ген в регионе, кодирующем гидрофобную сигнальную последовательность, имеет серию повторов последовательности СТСТТ. Количество СТСТТ определено рамкой трансляции гена и, в итоге, один из двух полных белков Ора экспрессируется. Рекомбинация между СТСТТ-последовательностями меняет количество СТСТТ-повторов и антигенную специфичность белка Ора [Stern A., Meyer T.F., 1987].

Borrelia hermsii — возбудитель возвратной лихорадки, демонстрирует другой пример антигенных вариаций. Этот микроорганизм содержит линейную плазмиду, которая кодирует множество молчащих копий вариабельных основных белков. Подобно пилям Neisseria, через Перестановки ДНК в экспрессионные сайты на других линейных плазмидах, боррелией осуществляется экспрессия антигенно различных основных белков [Girons S., Barbour A.G., 1991].

Многие бактериальные поверхностные компоненты варьируют от штамма к штамму. Вот только несколько примеров: ЛПС сальмонелл — более 60 типов; капсула S. pneumoniae — более 80 типов; IgA-протеаза H. influenzae — более 30 вариантов; М-белок стрептококков — более 80 серотипов. Большинство вариаций вызвано маленькими нуклеотидными заменами, вставками и делециями генов, которые кодируют эти факторы вирулентности, а в результате этих процессов мы наблюдаем антигенный дрейф у возбудителя инфекции [Finlay В., Falkow S., 1997].

Продукция бактериями секретируемых факторов, инактивирующих защиту хозяина. Микробная клетка обладает средствами дистанционного действия, которые представляют многочисленную группу секретируемых бактериальных субстанций, направленных на инактивацию механизмов иммунной защиты.

Наиболее изучено образование трипсиноподобных ферментов, расщепляющих иммуноглобулины класса A (IgA). Продукция данных ферментов характерна для бактерий, инфицирующих слизистые оболочки бактерий. Протеазы данного типа некоторых микроорганизмов (P. aeruginosa и S. marcescens) действуют неспецифично и расщепляют другие гуморальные защитные протеины хозяина — лизоцим, фибронектин, и даже компоненты тканей, включая фибробласты. Бактерии также продуцируют ферменты, деградирующие комплемент, лизоцим, бактерицидный компонент лейкоцитарного интерферона, гистоны, дефенсины и др. Наши знания об этих факторах постоянно расширяются [Бухарин О.В., Усвяцов Б.Я., 1996]. Очень важным представляется их способность к полифункциональному действию (см., например, действие LasB-эластазы). Благодаря этому патоген может добиться «успехов» в новом для себя хозяине не нарушая «принципа экономии генов».

Антигенная мимикрия. Под антигенной мимикрией понимается наличие сходных структур у хозяина и паразита, представленных молекулами разного генетического набора (рис. 12). Сходство между протеинами, закодированными у микроорганизмов, и собственными протеинами хозяина — встречается достаточно широко. Данное явление оставляет отчетливые генетические следы в человеческих популяциях после глобальных эпидемических катастроф.

Рис. 12. Схема антигенной мимикрии между Kl. pneumoniae и HLA человека. Гомологичный участок Kl. pneumoniae и антигены гистосовместимости человека (HLA B-27) имеют 6 из 9 пар сходных аминокислот [Бухарин О.В., Усвяцов Б.Я., 1996]

Рис. 12. Схема антигенной мимикрии между Kl. pneumoniae и HLA человека. Гомологичный участок Kl. pneumoniae и антигены гистосовместимости человека (HLA B-27) имеют 6 из 9 пар сходных аминокислот [Бухарин О.В., Усвяцов Б.Я., 1996]

Образование форм бактерий с отсутствием (дефектом) клеточной стенки. Невозможность «замаскировать» пептидогликан бактериальной клетки приводит к тому, что бактерия либо частично, либо полностью теряет его вместе с клеточной стенкой. С точки зрения паразита, это биологически оправданный шаг, так как возбудитель для организма становится неузнаваем и персистирование его в среде обитания продолжается [Бухарин О.В., Усвяцов Б.Я., 1996].

«Острова патогенности» и системы секреции бактериальной клетке. Так как инфекционная болезнь проявляется разнообразными патологическими процессами, протекающими в органах и тканях, то первоначально считалось, что патогенные свойства бактерий формируются с помощью каких-то редких и уникальных механизмов. Однако спектр таких механизмов оказался не так широк, как первоначально предполагалось. Была установлена общность ряда молекулярных инструментов, используемых бактериями для достижения разных целей [Finlay В., Falkow S., 1989]. Постепенно возникло и другое противоречие в представлениях о бактериальной патогенности. В ранних поисках генов вирулентности, исследователями была обнаружена локализация многих из них на плазмидах или Фагах [Брода П., 1982]. Позже стало ясно, что гены патогенности, переносимые фагами и плазмидами, не способны вызвать в организме хозяина все те патологические изменения, которые вызывают различные патогенные микроорганизмы [Mecsas J., Strauss E.J 1996], и их роль в эволюции патогенных бактерий явно преувеличена. Оба противоречия разрешились тогда, когда для исследователей интерес стали представлять хромосомы.

Было обнаружено, что большая часть так называемых факторов патогенности располагается на хромосомах отдельными кластерами из функционально связанных групп генов. Последовательности этих кластеров отличались от большей части генома, что позволили выдвинуть предположение об их «чужеродном» происхождении. Позже подобные структуры были найдены на плазмидах, однако они не охватывают всего многообразия таких структур, имеющихся на хромосомах. Эти наблюдения позволили выдвинуть концепцию «островов патогенности», расположенных на дискретных и часто имеющих чужеродное происхождение участках ДНК, кодирующих группы вирулентных признаков (табл. 2). Одновременно стали накапливаться сведения о механизме доставки синтезируемых факторов патогенности за пределы бактериальной клетки (рис. 13). В частности у вида Yersinia была обнаружена секреторная система (III типа), закодированная в одном из «островов патогенности» [Salmond G., Reeves PJ., 1993]. Механизм действия такой системы способствует продвижению эффекторных молекул в участки клетки хозяина, где они оказываются способными изменять его физиологию [Rosqvist R. et al., 1991; Rosqvist R., 1990].

Таблица 2

Характеристика отдельных «островов патогенности»

Микроорганизм

Наименование

Локализация

Районы

Стабильность

Чужеродность происхождения, G-C: % островов/ % хромосомы

Функция

Размер, Кб

Уропатогенная

E. coli 536

Остров патогенности I (Pai I)

Sel Ca, 82'

16 кб, прямые повторы, производные от sel C общий мотив с Pai II повторами

Нет

Прямые повторы; отсутствуют в E. coli нормальных фекалий и в лабораторных штаммах

альфа-гемолизин

70

 

Pai II

Leu Xa, 97'

18 кб, прямые повторы, производные от leu X, общий мотив с Pai I повторами

Нет

То же

альфа-гемолизин, prf (фибрии, адгезивные к клеткам хозяина), транскрипционные активаторы хромосомных генов

190

Уропатогенные E. coli J96

(Pai I)

Вблизи Phe Va, 64'

То же

альфа-гемолизин, pap (фибрии, адгезивные к клеткам хозяина), последовательности IS-элементов, последовательности R-плазмид, последовательности фага Р4

>170

 

Pai II

Phe Ra,94'

135 кб, неполный прямой повторяющийся

Нет

То же

альфа -гемолизин, pis (фимбрии, адгезивные для клеток хозяина), цитотоксический некротизирующий фактор I типа, последовательности IS-элементов, последовательности фага Р4, Omp R гомолог

106

Энтеропатогенные E. coli

Локус стирания энтероцитов, LEE

Sel Ca,, 82'

Повторов или IS-элементов не найдено

Даb

G+C:39/51, не показано тесной связи

Вызывает АЕ-поражения, секреторная система III-типа

35

S. typhymurium

 

 

SPI 1

Между fhe и mut S, 63'

Повторов или IS-элементов не найдено;

в некоторых серологически различных штаммах граничат с IS3

 

Да

 

G+C:42/52, отсутствуют в E. coli

Инвазия в культуры эпителиальных клеток, секреторная система III-типа

40

SPI 2

между ydh E и pyk F, 31'

Даb

G+C:42/52, отсутствуют в E.coli, законсервирован среди Salmonella

III тип секреции

40

Сальмонелла- индуцируемый жгутиковый ген А, sif A

potB/potC

140 кб, прямые повторы

Да

G+C:41/52, прямые повторы; отсутствие в E. coli; законсервирован среди Salmonella

Для формирования структур, связанных с сальмонелла-ассоциированными вакуолями в пределах эпителиальных клеток

1,6

Y. pestis

Способность к адсорбции экзогенных пигментов, Pgm

Pho E

2,2 кб, прямой повтор (=IS 100)

Нет

G+C: регион накопления гемина 47/46–50;

Рецептор иерсинеобактина / регион железорегулируемого белка 56–60/46–50;

Прямые повторы

Связывание гемина и конго красного.

Пестицинчувствительность.

Связывание железа.

Рост при 37°С в обедненной среде

102

V. cholerae 0137

Otn A otn B

rfb

Фланкирован двумя различными IS -элементами

IS-элемент; не содержится в Vibrio cholerae 01 El Tor

Синтез капсулы и О антигена

35

L. monocytogenes

Между prs и ldh

IS-элементов не обнаружено

Даb

В непатогенных видах отсутствует

Избавляет листерию от вакуоли; внутри и внеклеточное распространение

9,6

Примечание: а — ген tRNA; b — сравнительно

Рис. 13. Схема типов систем секреции бактерий. Для осуществления секреции все системы используют энергию АТФ-гидролиза. I и III типы секретируют белки через внутреннюю мембрану и клеточную оболочку бактерии за одну стадию; секретируемые белки не делают промежуточной остановки в периплазматическом пространстве, как это наблюдается при II типе секреции. Системы I и III типа сходны еще тем, что они не удаляют какой-то части секретируемого белка. В противоположность этому, N-концы белков, секретируемых по второму пути, утрачиваются ими при прохождении периплазматического пространства. Первый тип систем секреции представлен значительно меньшим количеством компонентов, чем третий (на рисунке это показано различающимися по форме и размеру белками). Третий тип секреции зависит от контакта с поверхностью эукариотической клетки [Galbn J., 1996]

Рис. 13. Схема типов систем секреции бактерий. Для осуществления секреции все системы используют энергию АТФ-гидролиза. I и III типы секретируют белки через внутреннюю мембрану и клеточную оболочку бактерии за одну стадию; секретируемые белки не делают промежуточной остановки в периплазматическом пространстве, как это наблюдается при II типе секреции. Системы I и III типа сходны еще тем, что они не удаляют какой-то части секретируемого белка. В противоположность этому,  N-концы белков, секретируемых по второму пути, утрачиваются ими при прохождении периплазматического пространства. Первый тип систем секреции представлен значительно меньшим количеством компонентов, чем третий (на рисунке это показано различающимися по форме и размеру белками). Третий тип секреции зависит от контакта с поверхностью эукариотической клетки [Galbn J., 1996]

У грамотрицательных бактерий такие белки проходят через две мембраны: внутреннюю, которая окружает цитоплазму, и внешнюю оболочку, которая является барьером между клеткой и окружающей средой. Между ними располагается периплазматическое пространство, через которое проходит общий путь секреции белков перед тем как была идентифицирована секреторная система рода Yersinia, уже были известны две другие системы (I и II типов) специализирующиеся на транспорте молекул к клеточной поверхности [Salmond G., Reeves PJ., 1993]. Протеины, секретируемые по механизму I типа, переходят непосредственно из цитоплазмы к клеточной поверхности, используя общий секреторный путь. Механизм секреции II типа использует этот путь до достижения белками периплазматического пространства. Затем белок переходит через наружную мембрану посредством других канальных белков. Обе системы (I и II типов) вовлечены в различные функции, включая и патогенез. Например, альфа-гемолизин E. coli использует систему I типа Пилеформирующие энтеропатогеные E. coli (EPEC) и энтеропатогенные E. coli (BTBC), используют II тип секретирующей системы [Mecsas J., Strauss E.J., 1996].

3а последние годы у многих грамположительных бактерий, вызывающих болезни животных и растений, были обнаружены высококоннсервативные системы III типа [Gijsegem F., 1995]. Они ответственны за транспортировку эффекторных молекул непосредственно из цитоплазмы к клеточной поверхности, где эти молекулы взаимодействуют с клетками макроорганизма и изменяют функционирование их белков таким образом, чтобы способствовать выживанию и репликации бактерии [Michiels Т. et al., 1990]. Секреция эффекторных белков системой III типа происходит непосредственно после контакта возбудителя инфекционной болезни с клеткой хозяина (в отличие от систем I и II типов). Поэтому ее можно назвать контактзависимой секрецией [Galbn J., 1996]. Из возбудителей, использующих III тип секреторной системы, лучше всего изучена Yersinia pestis, вызывающая чуму, а также некоторые энтеропатогены (семейств Yersinia, Salmonella, Shigella и ЕРЕС), вызывающие как диарею, так и системные инфекции. Из-за того, что секретируемые бактериями эффекторные молекулы могут поражать различные цели, эти системные инфекции могут проявляться различными синдромами [Salyers A., Whitt D., 1994]. Представители семейства Yersinia используют для этих целей эффекторные молекулы, разрушающие ключевые функции иммунных клеток и делают их «безвредными» для себя [Cornelis G., 1992]. В опытах на культурах клеток было установлено, что Yersinia секретируется примерно 10 типов эффекторных молекул и, по крайней мере, 3 из них инъецируются в клетки-мишени [Rosqvist R., 1994]. Два типа — Yop E и Yop H, модифицируют белки макрофагов и нарушают способность макрофагиальных клеток нейтрализовать действие этих эффекторных молекул, что позволяет Yersinia «процветать» в ретикулоэндотелии.

В отличие от эффекторных молекул семейства Yersinia, блокирующих нормальные клеточные функции, эффекторные молекулы Shigella и одной из сальмонелл с III типом секреции, побуждают клетки к осуществлению ими функций, не являющихся для них обычными [Mecsas J., Strauss E.J., 1996].

«Острова патогенности» могут включать несколько различающихся фрагментов (табл. 2). Например, нестабильный участок ДНК, протяженностью 102 кб, отвечающий за вирулентность возбудителя чумы, включает несколько самостоятельных регионов. Один содержит ген накопления гемина — его G+C состав аналогичен G+C составу хромосомы чумного микроба. У другого региона, содержащего гены, кодирующие рецептор иерсиниобактина и железорегулирующего белка, процентное содержание G+C значительно выше характерного для хромосомы Y. pestis в целом. Весь 102 кб участок может быть делетирован у возбудителя чумы. Но делеция может захватить и только один из генов участка [Mecsas J., Strauss E.J.,  1996]. В геноме другого представителя семейства — Y. enterocolitica, представлен только регион, кодирующий рецептор иерсиниобактина и железо-регулирующего белка [Fetherston J., 1992]. У других бактерий, например, Helicobacter pylori, строение «островов патогенности» еще сложнее [Mecsas J., Strauss E.J., 1996].

Нестабильность, как и наоборот, стабильность «островов», видимо не случайность в проявлении бактерией патогенности. Эти свойства способны создать бактерии дополнительные адаптивные преимущества. Высокая вирулентность может оказаться невыгодной бактерии на определенной стадии инфекционного процесса. Нестабильность же «островов патогенности» будет способствовать координированному снижению вирулентности всей популяцией возбудителя инфекции. Делеция «островов патогенности» может усилить экспрессию других, рядом расположенных, генов [Ritter A., 1995].

С другой стороны, отдельные факторы вирулентности являются адаптивными для бактерий. По этой причине они должны кодироваться на стабильных «островах патогенности». «Чужеродность» «островов» придает даже большую стабильность факторам вирулентности. Чужеродная ДНК, интегрировавшаяся с хромосомой, не вовлекается в рекомбинацию с ДНК близкородственных микроорганизмов, поэтому она может длительно поддерживаться в бактериальных популяциях [Falkow S., 1996]. Видимо применительно к каждому патогенному микроорганизму «стабильность» и «нестабильность» «островов» закрепляется естественным отбором.

В настоящее время нет полной ясности, каким образом «острова патогенности» приобретаются бактериями, но есть косвенные признаки того, что этот процесс идет непрерывно. Новый эпидемический штамм Vibrio cholerae О139 появился в результате приобретения «острова патогенности». Хотя известно, что он возник из штамма того же серотипа (О1), который является причиной происходящей в настоящее время пандемии холеры (О1 El Tor), V. cholerae О139 содержит дополнительный участок ДНК, который замещает часть О-антигенного кластера О1-штамма. Вставленная ДНК содержит открытую рамку считывания, гомологичную протеину, вовлеченному в синтез капсулы и О-антигена — двух факторов, по которым можно провести различия между О139 и О1 Е1 Тог. Тем самым повышается способность возбудителя холеры к инвазии [Mecsas J. Strauss E.J., 1996].

***

Бактерии являются мощными раздражителями иммунной системы, поэтому они могут использовать только первую стратегию паразитизма и в иммунокомпетентном хозяине лишь кратковременно имитировать вторую стратегию (L-формы). Бактерии обладают избыточными и альтернативными механизмами адгезии и колонизации, что позволяет им проявлять большую гибкость в выборе новых хозяев. Адгезия бактерий не является простым механическим взаимодействием их лиганд-структур с рецепторами на поверхности клеток-мишеней хозяина, имеющими другое предназначение. Взаимодействие патогена с клеткой хозяина приводит к активации сигнальных систем клеток-мишеней непосредственно каким-то бактериальным компонентом, либо через стимуляцию активационных факторов хозяина. Для противодействия иммунной системе бактерии используют как механизмы уклонения (экранирование клеточной стенки бактерий, антигенная мимикрия, образование L-форм бактерий и др.), так и разрушения (продуцирование секретируемых факторов, инактивирующих защиту хозяина; продуцирование «суперантигенов» и др.). Гены, кодирующие факторы патогенности бактерий и системы их секреции, вопреки распространенному еще недавно мнению об их преимущественно плазмидной локализации, в большинстве своем кластированны на участках хромосомной ДНК, называемых «островами патогенности». Эти участки активно участвуют в генетическом обмене между бактериями по пока еще неизвестному механизму. Патогенность «новых» для человека бактерий может объясняться тем, что они уже были преадаптированы к такой встрече в занимаемых ими ранее экологических нишах.

<~~ Предыдущая глава
Оглавление книги
Следующая глава ~~>